Irrationality of degenerations of Fano fibrations

Santai Qu

Institute of Geometry and Physics

University of Science and Technology of China

Birational Geometry Seminar 2024 March 2024

イロト イヨト イヨト

We work over an algebraically closed field ${\mathbb K}$ of characteristic zero.

- 1 Setup and degenerations of del Pezzo surfaces.
- 2 Bounding irrationality in higher-dimensional klt Fano varieties.
- **3** Elements of toroidal geometry.
- 4 Sketchy proof of the main result.

This is a joint work with Prof. C. Birkar.

Article link: arXiv:2401.07233

A Fano variety is a projective variety X with mild singularities and ample $-K_X$.

Example

- projective space \mathbb{P}^n .
- smooth complete intersections $X = H_1 \cap \cdots \cap H_r \subset \mathbb{P}^n$ with $\sum_{i=1}^r \deg H_i \leq n$.
- weighted projective spaces $\mathbb{P}(a_0, \ldots, a_n)$ (which has quotient singularities).
- \mathbb{P}^1 is the only Fano variety of dimension 1.
- Fano varieties of dimension 2 are called del Pezzo surfaces.

Definition

A **Fano fibration** is a contraction $X \to Z$ where X has mild singularities and $-K_X$ is ample over Z. A **contraction** $f: X \to Z$ is a projective morphism of varieties such that $f_*\mathcal{O}_X = \mathcal{O}_Z$; in particular, f is surjective with connected fibres.

イロト イヨト イヨト

Singularities of pairs

Definition

A **pair** (X, B) consists of a normal quasi-projective variety X and an \mathbb{R} -divisor B with coefficients in [0, 1] such that $K_X + B$ is \mathbb{R} -Cartier. In this case, we say that B is a **boundary**.

Definition

Let $\phi: W \to X$ be a log resolution of a pair (X, B), and write

$$K_W + B_W = \phi^* (K_X + B).$$

Let $\mu_D B_W$ be the coefficient of B_W at a prime divisor D on W. Then the **log discrepancy** of D with respect to (X, B) is defined as

$$a(D,X,B):=1-\mu_D B_W.$$

We say (X, B) is **Ic** (resp. **kIt**, resp. ϵ -**Ic**) if a(D, X, B) is ≥ 0 (resp. > 0, resp. $\geq \epsilon$) for every divisor D on an arbitrary log resolution $W \to X$.

イロト 不得 トイヨト イヨト

э

Degenerations of del Pezzo surfaces

Let $f: X \to Z$ be a contraction, H a general fibre, and F a special fibre over a closed point $z \in Z$. Then we say that F is a **degeneration** of H.

Example

A degeneration of \mathbb{P}^1 is a chain of rational curves. For example, degeneration of a smooth conic curve can be a union of two lines.

Definition

Let X be a variety of dimension n over \mathbb{K} .

- X is rational if there is a birational map $\mathbb{P}^n \dashrightarrow X$,
- X is unirational if there is a dominant rational map $\mathbb{P}^n \dashrightarrow X$,
- X is rationally chain connected (RCC) if for a pair of very general closed points x₁, x₂ ∈ X there is a connected curve C ⊂ X containing x₁, x₂ such that every irreducible component of C is rational, and
- X is rationally connected (RC) if we can take C irreducible.

Degenerations of del Pezzo surfaces

Theorem [Campana92, Kollár-Miyaoka-Mori92, Zhang04, . . .] A klt Fano variety X is rationally connected (RC).

Remark

The result fails if X is only lc, e.g., cone over an elliptic curve.

Definition

Let X be a variety of dimension n. We say that X is **ruled** (resp. **uniruled**) if there is a variety Y of dimension n - 1 and a map

$$\mathbb{P}^1 \times Y \dashrightarrow X$$

which is birational (resp. dominant).

Remark

 $\mathsf{Rational} \Longrightarrow \mathsf{unirational} \Longrightarrow \mathsf{RC} \Longrightarrow \mathsf{RCC} \Longrightarrow \mathsf{uniruled}.$

Theorem [Matsusaka68] [Kollár96, IV.1.6]

Let $f: X \to Z$ be a contraction to a smooth curve Z with X normal and irreducible. If the generic fibre of f is (geometrically) ruled, then a special fibre of f over a closed point $z \in Z$ also has ruled components.

Theorem [Kollár96, IV.3.5.3]

Degenerations of rationally chain connected (RCC) varieties are RCC. Degenerations of rationally connected (RC) varieties are RCC.

Example ("Rational" degenerates to "non-rational")

A smooth del Pezzo surface (rational) can degenerate to a non-rational singular del Pezzo surface. For example, pick an elliptic curve $E \subset \mathbb{P}^2$ which gives a cone $F \subset \mathbb{P}^3$. Pick another smooth del Pezzo surface $H \subset \mathbb{P}^3$, then we can connect F and H by a pencil of surfaces. The singular surface F is **non-rational**; however, F is ruled, that is, $F \dashrightarrow C \times \mathbb{P}^1$ for some smooth curve C. This happens because F has lc singularities but not klt singularities.

イロト イボト イヨト イヨト

Degenerations of del Pezzo surfaces

Let C be a smooth curve. We can measure the "non-rationality" of C by its genus g(C) and gonality gon(C).

Definition

By **gonality** gon(*C*) of a smooth projective curve *C*, we mean the smallest natural number *r* such that there is a finite morphism $C \to \mathbb{P}^1$ of degree *r*.

Theorem [Birkar-Loginov (2021), Theorem 1.1]

Fix a positive real number t. Assume that $f: X \to Z$ is a klt Fano fibration where dim X = 3 and dim Z = 1. Assume that F is an irreducible fibre and that (X, tF_{red}) is lc. Then,

- F_{red} is birational to $\mathbb{P}^1 \times C$, where C is a smooth projective curve with gonality gon(C) bounded depending only on t,
- 2 if $t > \frac{1}{2}$, then the genus g(C) is bounded, and
- 3 if t = 1, then the genus $g(C) \le 1$.

イロト イヨト イヨト イヨト

Degenerations of del Pezzo surfaces

Remark

- To bound the genus g(C), it is necessary to assume that $t > \frac{1}{2}$.
- A counter-example is given in [Birkar-Loginov (2021), Example 2.3] where $t = \frac{1}{2}$ and the gonality gon(C) is bounded, but g(C) can be arbitrarily large.
- The gonality is not bounded neither if (X, tF_{red}) is not lc.

Theorem [Birkar-Loginov (2021), Theorem 1.3]

Fix a positive real number t. Assume that $(X, B) \rightarrow Z$ is a Fano-type log Calabi-Yau fibration where dim X = 3 and dim $Z \ge 1$. Assume that D is a component of B with coefficient $\ge t$ contracted to a point on Z. Then:

- **1** D is birational to $\mathbb{P}^1 \times C$, where C is a smooth projective curve with gonality gon(C) bounded depending only on t,
- 2 if $t > \frac{1}{2}$, then the genus g(C) is bounded, and
- 3 if t = 1, then the genus $g(C) \le 1$.

イロト イヨト イヨト イヨト

A variety X over Z is called **of Fano type over** Z if there is a boundary Γ such that (X, Γ) is a klt and $-(K_X + \Gamma)$ is ample/Z.

Theorem [Hacon-M^cKernan07, Corollary 1.5]

Assume that X is of Fano type over Z. Then, every fibre of $X \rightarrow Z$ is RCC.

Definition

A log Calabi-Yau fibration $(X, B) \to Z$ is an lc pair (X, B) over Z such that the underlying morphism $X \to Z$ is a contraction and

$$K_X + B \sim_{\mathbb{R}} 0/Z.$$

If in addition X is of Fano type over Z, then we say that (X, B) is a **Fano-type** log Calabi-Yau fibration.

イロト イヨト イヨト イヨト

Degenerations of del Pezzo surfaces

- The Fano-type condition can be removed in dimension 2.
- The absolute case $(\dim Z = 0)$ is allowed in dimension 2.

Theorem [Birkar-Loginov (2021), Theorem 1.5]

Let *u* be a positive real number. Let $(S, \Delta) \to Z$ be a log Calabi-Yau fibration $(K_X + \Delta \sim_{\mathbb{R}} 0/Z)$ where *S* is of dimension 2. Assume that the coefficient of a component *D* of Δ is $\geq u$ and *D* is contracted to a point on *Z*. Then:

- 1 the gonality of D is bounded depending only on u,
- ② if $u > \frac{1}{2}$, then the genus $g(D^{\nu})$ of the normalisation D^{ν} of D is bounded depending only on u,
- 3 if u = 1, then $g(D^{\nu}) \leq 1$, and
- 4 if dim $Z \ge 1$, then $g(D^{\nu}) \le 1$.

Remark

The absolute case and non-Fano situation in dimension 2 are applied to prove the case when dim X = 3 and dim $Z \ge 1 \implies$ difficulties when dim $X \ge 4$.

イロト 不得 トイヨト イヨト

э

Bounding irrationality in higher dimensions

What about higher-dimensional Fano fibrations over curves?

Definition (analogue of "gonality" in higher dimensions)

Given an irreducible projective variety X of dimension n, we define the **degree of irrationality** of X as

$$\operatorname{irr}(X) = \min \left\{ \delta > 0 \ \middle| \begin{array}{c} \exists \text{ degree } \delta \text{ dominant rational map} \\ X \dashrightarrow \mathbb{P}^n \end{array} \right\}.$$

For convenience, we also say that the **irrationality of** X is irr(X).

Question [Birkar-Loginov (2021), Question 1.4]

Fix a positive real number t > 0 and natural number d. Suppose that $f: X \to Z$ is a **klt Fano fibration** over a smooth curve Z, where dim X = d. Assume that D is the reduction of an irreducible fibre of f such that (X, tD) is lc. Is it true that there is a rational map $D \dashrightarrow C$, where the general fibres are rationally connected and C is a smooth projective variety with bounded degree of irrationality?

Theorem [Birkar-Q (2024)]

Fix positive real numbers $\epsilon > 0$, $t \in (0, 1]$ and a natural number d. Assume that $f: X \to Z$ is a klt Fano fibration with dim X = d such that

- \bullet Z is a smooth curve,
- **2** X is ϵ -lc over the generic point of Z, and
- **③** F is the reduction of an irreducible fibre of f such that (X, tF) is lc.

Then, there exists a natural number r depending only on ϵ , t, d such that there is a dominant rational map $F \rightarrow C$ whose general fibres are **rational** and C is a smooth projective variety with degree of irrationality $\leq r$.

< ロ > < 同 > < 回 > < 回 >

Bounded and birationally bounded families of varieties

The condition on ϵ -lc implies boundedness.

Definition

(1). A **couple** (X, D) consists of a quasi-projective variety X and a reduced Weil divisor D on X.

- (2). Let Q be a set of couples (X, D). We say that Q is **bounded** if
 - there exist finitely many projective morphisms $V_i \rightarrow T_i$ of varieties and reduced divisors C_i on V_i ,
 - for each $(X, D) \in \mathcal{Q}$, there exist an *i* and a closed point $t \in T_i$ such that

where ϕ is an isomorphism, and $V_{i,t}$ and $C_{i,t}$ are the fibres over t of the morphisms $V_i \rightarrow T_i$ and $C_i \rightarrow T_i$ respectively.

イロト イボト イヨト イヨト

If D = 0 for all $(X, D) \in Q$, we say the family Q of varieties X is **bounded**. Moreover, in this case, we say that the family of varieties Q is **birationally bounded** if in the definition above we take ϕ as a birational map.

Theorem [Alexeev94]

For any fixed $\epsilon > 0$, ϵ -lc del Pezzo surfaces are bounded.

Theorem [Kollár-Miyaoka-Mori92]

Smooth Fano varieties of any given dimension form a bounded family.

Theorem [Birkar16, Borisov-Alexeev-Borisov conjecture]

Let d be a natural number and $\epsilon > 0$ a positive real number. Then, ϵ -lc Fano varieties of dimension d form a bounded family.

A toric variety X of dimension d is an irreducible variety containing an algebraic torus $\mathbb{T}_X \simeq \mathbb{G}_m^d$ as a Zariski open subset such that the action of \mathbb{T}_X on itself extends to an algebraic action of \mathbb{T}_X on X.

Remark

If D is the **toric boundary** of X, that is, D is the reduction of the complement of the torus \mathbb{T}_X of X, it is well-known that (X, D) is lc and $K_X + D \sim 0$. In this case, we say (X, D) is a **toric couple**.

Example

Let X be the affine space \mathbb{A}^d , and D is the union of d coordinate hyperplanes. Then, (X, D) is a toric couple.

Remark

Toric varieties are rational.

Let (X, D) be a couple. We say the couple is **toroidal** at a closed point $x \in X$ if there exist a **normal affine toric variety** W and a closed point $w \in W$ such that there is a \mathbb{K} -algebra isomorphism

$$\widehat{\mathcal{O}}_{X,x} \to \widehat{\mathcal{O}}_{W,w}$$

of completions of local rings so that the ideal of D is mapped to the ideal of the torus-invariant divisor $C \subset W$, that is, the complement of the big torus \mathbb{T}_W of W. We call $\{(W, C), w\}$ a **local toric model** of $\{(X, D), x\}$.

Proposition [Artin69, Corollary 2.6]

There is a common étale neighbourhood of (X, x) and (W, w).

Definition

We say the couple (X, D) is **toroidal** if it is toroidal at every closed point.

Remark

In literature, the open immersion $U_X := X \setminus \text{Supp} D \subset X$ is called a **toroidal embedding**. We usually use the notions toroidal couples and toroidal embeddings interchangeably. Moreover, if the embedding $U_X \subset X$ (or equivalently, the couple (X, D)) is clear from the context, we could just say that X is a **toroidal variety** or X has a toroidal structure.

Example

Let (X, D) be a log smooth couple. Then, (X, D) is toroidal.

Remark

Toroidal varieties are not necessarily rational. Any function field of a variety can be realised as the function field of a toroidal variety by taking log resolutions.

Lemma

Let (X, D) be a toroidal couple. Then X is normal and Cohen-Macaulay, $K_X + D$ is Cartier, and (X, D) is an Ic pair.

Proposition

Let (X, D) be a toroidal couple, and let F be a divisor over X. Then, the log discrepancy a(F, X, D) is a non-negative integer. In particular, if a(F, X, D) < 1, we must have a(F, X, D) = 0 and $F \rightarrow \text{centre}_X F$ has rational general fibres.

Proof.

Pass to common étale neighbourhoods and extract divisors.

イロト イボト イヨト イヨト

Elements of toroidal geometry (toroidal morphisms)

Definition

Let (X, D) and (Y, E) be couples and let $f: X \to Y$ be a morphism of couples. Let $x \in X$ be a closed point and y = f(x). We say $(X, D) \to (Y, E)$ is a **toroidal morphism at** x if there exist local toric models $\{(W, C), w\}$ and $\{(V, B), v\}$ of $\{(X, D), x\}$ and $\{(Y, E), y\}$ respectively, and a toric morphism $W \to V$ of affine normal toric varieties so that we have a commutative diagram

where the vertical maps are induced by the given morphisms and the horizontal maps are isomorphisms induced by the local toric models. We say the above morphism is **toroidal** if it is toroidal at every closed point of X. Equivalently, we call the corresponding morphism $f: (U_X \subset X) \to (U_Y \subset Y)$ a **toroidal morphism of toroidal embeddings**.

Sketch proof of dimension 3 (setup)

Fix positive real numbers $\epsilon > 0$, $t \in (0, 1]$. Assume that $f: X \to Z$ is a klt Fano fibration with dim X = 3 such that

- **1** Z is a smooth curve,
- **2** X is ϵ -lc over the generic point of Z, and
- **3** F is the reduction of an irreducible fibre of f such that (X, tF) is lc.

Goal

The goal is to show that F admits a structure $\pi: F \dashrightarrow C$ where C is a smooth variety with bounded irrationality and a general fibre of π is rational.

Remark (boundedness of general fibres)

The general fibres of $X \rightarrow Z$ are ϵ -lc irreducible del Pezzo surfaces, hence they form a bounded family of varieties by [Alexeev94] or B-BAB.

Sketch proof of dimension 3 (bir. to toroidal morphisms)

There is a commutative diagram:

$$\begin{array}{ccc} (U_{Y'} \subset Y') \xrightarrow{m_X} Y \leftarrow \stackrel{\phi}{-} - X \\ f' & & \downarrow^g & \downarrow^f \\ (U_{Z'} \subset Z') \xrightarrow{m_Z} Z = Z \end{array}$$

such that

- 1) ϕ is a birational map,
- **2** every fibre of $g: Y \to Z$ is bounded (relatively bounded),
- **3** ϕ can be chosen so that it does not contract any curve over η_Z ,
- 4 f' is a toroidal morphism of toroidal embeddings,
- **5** m_X and m_Z are projective birational morphisms, and
- 6 the general fibres of f' are bounded ([Abramovich-Temkin-Włodarczyk20]).

< ロ > < 同 > < 回 > < 回 >

Sketch proof of dimension 3 (Ic centre of toroidal couples)

Definition

Let (X, B) be a pair where B is a boundary, and let $X \to Z$ be a contraction. Let $T = \lfloor B \rfloor$ and $\Delta = B - T$, and $n \in \mathbb{N}$ a natural number. An *n*-complement of $K_X + B$ over a point $z \in Z$ is of the form $K_X + B^+$ such that over some neighborhood of z we have the following properties:

- (X, B⁺) is lc,
- $n(K_X + B^+) \sim 0$, and
- $nB^+ \ge nT + \lfloor (n+1)\Delta \rfloor$.

By the existence of complements ([Birkar19, Theorem 1.8]), there exists an $n \in \mathbb{N}$ depending only on d, t such that there exists an *n*-complement $K_X + B^+$ of $K_X + tF$ over Z, that is, there exists a boundary B^+ on X such that

- (X, B^+) is log canonical,
- $n(K_X + B^+) \sim 0/Z$,
- $tF \leq B^+$, and
- $a(F, X, B^+) < 1.$

Sketch proof of dimension 3 (Ic centre of toroidal couples)

$$\begin{array}{ccc} (U_{Y'} \subset Y') \xrightarrow{m_X} Y \leftarrow \stackrel{\phi}{-} - X \\ f' & & \downarrow^g & \downarrow^f \\ (U_{Z'} \subset Z') \xrightarrow{m_Z} Z = Z \end{array}$$

Write

$$K_{Y'} + B' = (\phi^{-1} \circ m_X)^* (K_X + B^+).$$

Proposition

Denote by $D' := Y' \setminus U_{Y'}$ the toroidal boundary. Then, the toroidal modifications m_X and m_Z can be chosen in the way such that $B' \leq D'$.

Corollary

Denote by C' the centre of F on Y'. Then, we have a(F, Y', D') < 1, that is, C' is an lc centre of (Y', D').

24 / 29

イロト イポト イヨト イヨト

Sketch proof of dimension 3 (Ic centre of toroidal couples)

Proposition

The toroidal modifications f', m_X , and m_Z can be chosen in the way such that the support of the fibre of f' over $z \in Z \simeq Z'$ is contained in D'.

• • • • • • • • • • •

Sketch proof of dimension 3 (boundedness of slc pairs)

• Denote by S the reduction of the fibre of f' over $z \in Z \simeq Z'$. Then, C' is an lc centre of (Y', D') contained in S. By adjunction, we can write

$$K_S + D_S = (K_{Y'} + D')|_S$$

for a boundary divisor D_S . If (S, D_S) is a semi-log canonical (slc) pair, then C' is an lc centre of the two-dimensional slc pair (S, D_S) .

• Taking a sufficiently ample/Z' divisor on Y' etc., then we are in the situation to apply the main theorem of [Hacon-M^cKernan-Xu14] on the boundedness of slc pair, which shows that (S, D_S) is bounded.

• Therefore, C' is also bounded as it is an lc centre of a bounded set of slc pairs (hence C' has bounded gonality and arithmetic genus if C' is an irreducible curve).

ヘロト ヘロト ヘヨト ヘヨト

Sketch proof of dimension 3 (bounded gonality and genus)

• Let C be a resolution of C', then there is a rational map $\pi: F \dashrightarrow C$. As C' is an lc centre of the toroidal couple (Y', D'), a general fibre of π is rational.

- The dimension of C gives several possibilities on the structure of F:
 - 1) if dim C = 0, then F is a rational surface,
 - **2** if dim C = 1, then C has bounded gonality gon(C) and genus g(C), a general fibre of π is isomorphic to \mathbb{P}^1 , hence F is birational to $\mathbb{P}^1 \times C$, and
 - **3** if dim C = 2, then F is birationally bounded as it is birational to C'.

Recall that F must be ruled, hence F is bir. to $\mathbb{P}^1 \times E$ for some smooth curve E.

- **1** We can take $E = \mathbb{P}^1$.
- **2** E is isomorphic to C which has bounded gonality and genus.
- S As F is birationally bounded in this case, F has bounded degree of irrationality, hence E also has bounded gonality which is bounded from above by the degree of irrationality of F (compare the "stable-irrationality" and gonality). The irregularity (= dim H¹(Σ, O_Σ)) of the surface P¹ × E is equal to the genus g(E). Then there are only finitely many possible values for the irregularity of P¹ × E, so g(E) is also bounded from above.

A D A A B A A B A A B A

Remark

We have shown that F is birational to $\mathbb{P}^1 \times E$ where E has both gonality and genus bounded. However, if we drop the condition on ϵ -lc of general fibres (boundedness condition), then [Birkar-Loginov, Example 2.3] shows that the gonality gon(E) is always bounded, but g(E) could be arbitrarily large.

Remark

Our approach via toroidal geometry works in any dimension.

$$\begin{array}{ccc} (U_{Y'} \subset Y') \xrightarrow{m_X} Y \leftarrow \stackrel{\phi}{-} - X \\ f' & & \downarrow g & \downarrow f \\ (U_{Z'} \subset Z') \xrightarrow{m_Z} Z = Z \end{array}$$

For any $d = \dim X$, $C' := \operatorname{centre}_{Y'} F$ is birationally bounded.

Thank you!

	1107	
	00	

▲□▶ ▲圖▶ ▲国▶ ▲国▶

2